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Abstract

We study a joint pricing and resource allocation problem in a network with applications

to production planning and airline revenue management� We show that the objective function

reduces to a convex optimization problem for certain types of demand distributions� which is

tractable for large instances� We propose several approaches for dynamic pricing and resource

allocation� Numerical experiments suggest that coordination of pricing and resource allocation

policies in a network while taking into account the uncertainty of demand can lead to signi�cant

revenue gains� Our strongest approach for the dynamic problem is an elegant combination of

linear and dynamic programming�

� Introduction

We study a joint pricing and resource allocation problem in a network with applications to produc�

tion planning and airline revenue management� Suppose a company has a �nite supply of resources

which it can use to produce multiple products with di�erent resource requirements� The demand

for each product is uncertain and depends on its price� The company has to decide how to allocate

its resources for production and how to price its �nished products to maximize its expected revenue�

The application of this problem that motivated this research is airline pricing� where the products

are combinations of origin� destination and fare class� and the resources are seats on �ights�

Our model extends the classical single�product� single�period newsvendor problem in three ways�

�	 We study a multi�product resource allocation problem with capacity constraints� instead of a

re�stocking decision for a single product� 
	 Prices are included as decision variables� not given

exogeneously� �	 We consider a multi�period planning horizon� which allows dynamic pricing� To

highlight the contributions of this paper� we brie�y review the relevant literature on airline revenue

management� newsvendor problems and dynamic pricing�
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��� Literature review

Airline revenue management

The focus of the literature in airline revenue management is on seat inventory control for a

given set of prices� Models to determine static booking limits for a single�leg �ight were studied

by Littlewood ���
	� Belobaba ����� ��	� Wollmer ��
	� Brumelle and McGill ���	 and

Robinson ���	� Continuous�time booking policies� where each booking request is accepted or

rejected depending on the remaining capacity of the �ight� were studied by Lee and Hersh ���	�

Chatwin ���� ��	� Lautenbacher and Stidham ��	 and Subramanian et al� ��	� These

policies are typically based on a dynamic programming model that includes extensions of the basic

problem such as overbooking� cancellations and no�shows� During the mid�eighties� American

Airlines recognized the importance of network �origin�destination based	 RM� aimed at getting the

right mix of local and connecting tra�c �Smith and Penn� ���	� Exact DPmodels are intractable in

this case� Mathematical programming based heuristics for this problem were developed by Glover

���
	� Wollmer ����	� Simpson ���	� Curry ���	� Williamson ��
	� Chen et al� ���	�

Talluri and van Ryzin ���� �	� Ciancimino et al� ��	� Bertsimas and Popescu �
���	 and

De Boer et al� �
��
	� Alternative solutions are proposed in van Ryzin ���	� Bratu ��	 and

Bertsimas and de Boer �
��
	� who develop a simulation�based approximate dynamic programming

method� Weatherford ���	 is a general discussion of airline revenue management� McGill and

van Ryzin ��	 give an extensive literature review of this �eld that includes most of the work

cited above�

To our knowledge� few papers address the joint pricing and seat allocation problem� Kuyumcu

and Garcia�Diaz �
���	 study the problem of an airline having de�ned a large number of booking

classes with corresponding fares and restrictions� only a limited number of which can be put in the

market due to CRS restrictions� In e�ect� this limits the pricing �exibility to a given discrete set

of allowable prices� The authors propose a large�scale binary IP formulation of this problem� They

develop a special�purpose algorithm to solve this model e�ciently� but its performance on large

practical instances is unclear�

Weatherford ���	 studies the joint pricing and inventory control problem for a single�leg �ight

with multiple fare classes� Demand is modeled by Gaussian distributed random variables whose

expectations are functions of the fares� The author considers both partitioned inventory control

with no diversion� and nested inventory control with and without diversion� For nested inventory

control� the expected revenue as a function of the booking limits and prices can only be expressed

analytically for small instances �
 or � classes	 under the assumption that lower fare classes book

�rst� The function has to be evaluated numerically and can be optimized using standard non�linear

optimization algorithms� This approach does not scale well to problems with more fare classes or

to a network environment� No structural results about the expected revenue function are given�

Newsvendor problem






The extension of the classical single�product� single�period newsvendor problem to a capacitated

multiple�product inventory problem� aptlty named the newsstand problem� was studied by Lau and

Lau ���� ��	� They propose a non�linear optimization algorithm to determine the optimal

single�period production plan for given prices and demand distributions� No structural results

about the objective function of this problem are given�

The extension of the classical newsvendor problem with price as a decision variable was studied

by Mills ���� ��
	� Karlin and Carr ���
	� Zabel ����	� Young ����	� Lau and Lau ����	�

Polatoglu ���	 and Dana and Petruzzi �
���	� Petruzzi and Dada ��	 review the literature in

this �eld including some extensions� Karlin and Carr ���
	� Nevins ����	� Zabel ���
	� Thomas

����	� Thowsen ����	� Petruzzi and Dada ��	 and Federgruen and Heching ��	 consider

the single�product� multi�period combined pricing and inventory control problem� which is typically

solved by dynamic programming� To our knowledge� the case of multiple products has not been

studied within this framework�

Dynamic pricing

Gallego and van Ryzin ���	 and Zhao and Zheng �
���	 model demand as a controlled

continuous�time stochastic point process with intensity a known� decreasing function of the price�

They consider the problem of optimally pricing a given inventory of a single product over a �nite

planning period before it perishes or is sold at salvage value� There are no re�ordering decisions�

Chatwin �
���	 considers the special case that the price has to be chosen from a �nite set of

allowable prices� Feng and Gallego �
���	 extend the model by allowing the demand intensity to

depend on sales�to�date� The model of You ��	 allows group bookings�

Gallego and van Ryzin ���	 and Paschalidis and Tsitsiklis �
���	 extend this type of model

to the dynamic pricing of multiple products whose production draws from a shared supply of

resources� Gallego and van Ryzin consider a �nite horizon joint pricing and resource allocation

problem� The continuous�time pricing problem cannot be solved exactly� but the authors propose

two heuristics based on a deterministic version of the problem that are asymptotically optimal as

the scale of the problem �both expected demand and available resources	 increases� Paschalidis and

Tsitsiklis address the pricing of network services� which they formulate as a �nite�state� continuous�

time� in�nite�horizon average reward problem� Similarly to Gallego and van Ryzin� the authors

show that an asymptotically optimal pricing policy can be determined using a static� deterministic

model� In Section �� we will argue that this result may depend on demand following a Poisson

process� Our periodical model allows more general types of demand distributions�

Kleywegt �
���	 gives an optimal control formulation of the multi�product dynamic pricing

problem� Kachani and Perakis �
��
	 propose a deterministic �uid model of dynamic pricing

and inventory management for non�perishable products in capacitated and competitive make�to�

stock manufacturing systems� The shortcoming of this type of approach is that the model ignores

randomness� which as we shall see in Section ��� does a�ect the optimal pricing policy�
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��� Contributions and outline

The main contribution of this work is the proposed joint pricing and resource allocation model in

a network� To our knowledge� this is a new extension of the newsvendor model� which we believe

has a promising application in airline pricing� We show that our model is convex for certain types

of demand distributions thus tractable for large instances�

We test several heuristics to solve the dynamic pricing and resource allocation problem� The

strongest approach is an elegant combination of linear and dynamic programming� We derive simple

bounds on the optimal expected revenue of this problem that depend on the coe�cient of variation

of demand� Extensive simulation experiments show the value of centralized dynamic pricing based

on a stochastic model of demand� In contrast� Gallego and van Ryzin ���	 and Paschalidis and

Tsitsiklis �
���	 found that a static pricing policy based on a deterministic model of demand is

close to optimal� Our results suggest that this is only true when demand follows a Poisson process�

The outline of this paper is as follows� In Section 
 we present the single�period model and

show that it can be reformulated as a convex optimization problem for certain types of demand

distributions� In Section � we propose three heuristic multi�period extensions of this model that

allow dynamic pricing� In Section � we derive bounds on the optimal expected revenue of the joint

pricing and resource allocation problem that explicitly depend on the level of demand variability�

In Section � we present numerical results that show the value of centralized dynamic pricing and

compare the heuristics of Section �� In Section � we investigate the impact of the inventory policy

on the optimal prices� Section � summarizes our conclusions�

� The Model

��� Assumptions

To model the single�period pricing and resource allocation problem� we make the following assump�

tions�

�� The production takes place at the beginning of the period�


� Demand for each product is uncertain� Its expectation only depends on its price�

�� Excess demand is lost� Unsold products have no salvage value�

In Section � we consider multi�period planning horizons� This is an important extension� since

dynamic pricing is an e�ective revenue management tool in many practical applications�

Assumption � models a make�to�stock inventory policy� This implies that actual sales do not

depend on the order in which demand materializes� which allows a static formulation of the problem�

The role of the inventory policy is further discussed in Section ��

By Assumption 
� demand for a product is a random variable whose distribution only depends on

its price� This simpli�cation was necessary to show that our model has certain desirable properties

�



that allow e�cient solution methods� The model can easily be extended to include cross�elasticities

of demand� but further research is required to �nd out the potential revenue gain and whether this

model would be computationally tractable�

Assumption � applies to the airline pricing problem and simpli�es the objective function� The

model can easily be extended to incorporate penalties for shortages� salvage value of excess pro�

duction or inventory costs� in which case the analysis carries through as in Section 
���

��� Model formulation

We now introduce some notation that is used throughout the paper� Let xi and pi be the production

level and price of product i respectively� Let �i�pi	 be the expected demand for product i at this

price� Let Aij be the amount of resource j required for the production of one unit of product i�

Let n be the number of products the business can produce and m be the number of resources it

can utilize for this� The demand Di�pi	 for good i at price pi is a random variable de�ned by

Di�pi	 � �i�pi	Zi �i � �� ���� n	 ��	

for some continuous random variable Zi � � with E�Zi� � �� V ar�Zi� �� and pdf fi�zi	� These ran�

dom variables are not required to be independent� This type of multiplicative model was orginally

proposed by Karlin and Carr ���
	 and has since been used frequently in the supply chain lit�

erature �e�g� Bernstein and Federgruen� 
��
	� Separating the price�dependent expected demand

function �i�pi	 from the demand uncertainty modeled by Zi signi�cantly simpli�es the analysis of

the model� Note that ��	 implies that the coe�cient of variation of demand is independent of price�

The joint resource allocation and pricing problem outlined above is modeled by�

maxx�p E �
P

i piminfxi� Di�pi	g�
s�t� Ax � c

x � �

�
	

Here and in the remainder of this paper� bold face notation denotes vectors and matrices�

��� Structural results

In this section we investigate under which assumptions Model �
	 is well�behaved� i�e� poses a

concave optimization problem that can be solved e�ciently� Since in practice problems of this type

can be large� this is an important issue�

The objective function of Model �
	 is separable and there are no constraints connecting the

prices� As a result� the price of each product can be set separately and optimally as a function of its

production level� Thus the price variables can be elimated from the optimization problem and the

objective function can be reformulated as a �perhaps only implicit	 function of the production level�

This is a typical approach in newsvendor type pricing problems� cf� Petruzzi and Dada ��	� We

will show that although the expected revenue may not be jointly concave in x and p� as suggested
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by the crossterm xipi in the objective function� the expected revenue at the optimal prices as a

function of the production level can be shown to be concave under certain regularity conditions�

In the following� we assume that the expected demand functions �i�pi	 are non�negative� non�

increasing and twice continuously di�erentiable� and that the riskless pro�t functions ri�pi	 �

pi�i�pi	 are strictly concave �terminology by Mills� ��	� For example� these conditions are satis�ed

by the linear expected demand function �i�pi	 � ai � bipi for ai� bi � ��

Because of the separable objective function� we can limit the analysis to the case of a single

product and drop the index i� Let the expected revenue function R�x� p	 be de�ned as

R�x� p	 � pE �min fx� ��p	Zg�
� p��p	E �min fy�x� p	� Zg� ��	

where y�x� p	 � x���p	 is an auxiliary variable that simpli�es notation� For convenience� the

dependence of y on x and p is sometimes surpressed� We �rst need to show that the optimal price

at a given production level is well�de�ned�

Theorem �� For x � �� the optimal price p�x	 � argmaxpR�x� p	 is a continuously di�eren�

tiable function of the production level x and the unique solution of

E �min fy� Zg� � �p���p	
��p	

Z y

�
zf�z	dz ��	

Proof� See Zabel ����	� �

Optimality condition ��	 can be solved numerically� Let p� denote the price that maximizes

r�p	� i�e� the optimal price in the case of in�nite capacity� Then p� � p�x	� which was �rst shown

by Karlin and Carr ���
	� Let R�x	 � R�x� p�x		 be the expected revenue at the optimal price as

a function of the production level� We now derive su�cient conditions for R�x	 to be concave�

Theorem �� If log f�z	 is concave or if Z � Lognormal� then for x � �� R�x	 is concave and

�p�x	

�x
� �

Proof� See Young ����	� �

The su�cient condition of the theorem holds for a wide class of probability distributions� for

instance the Uniform� Beta� Gamma� Weibull or truncated Normal distribution �e�g� Barlow and

Proschan� ��	� Note that if Z were allowed to take negative values� even with small probability�

the result would not hold� For very small x� a further decrease in production level may lead expected

sales to become negative� thus requiring the optimal price to go down to stimulate demand� We

were able to construct a numerical example with Z � Normal for which R�x	 was not concave�

To conclude this section� we work out an example that illustrates our approach�

Example� Let Z � Uniform��� 
	 and let ��p	 � 	 � 
p for some 	� 
 � �� Then f�z	 � �
�

and F �z	 � z
� for � � z � 
� Both are � otherwise� Note that p� � �

�� � thus ��p�	 � �
� is an

�



upperbound on the expected demand� By ��	 and Z � 
� we therefore have D�p	 � 	 for all p� so

we only have to consider x � 	� For � � y � 
 we have

E �minfy� Zg� � y � �

�
y� ��	

Note that for y � 
 we have E �minfy� Zg� � � and p � p�� which implies

y �
x

��p�	
� 	

	�

� 


Contradiction� so we don�t have to consider this case� Using ��	� optimality condition ��	 becomes

y � �

�
y� �


p

	� 
p

�

�
y�

which is solved by

p�x	 �
	



�
p
	x





Thus p�x	 is indeed decreasing in x� Working out the equations� this gives

R�x	 �
x




�
	�p

	x �
x

�

�

From this� it follows that

�R�x�
�x

� �
�

�
	� �

�

p
	x� x

�

�
��R�x�
�x�

� �
��

�
�� �

�

p
�
x

� � �

since x � 	� Thus R�x	 is indeed a concave function of x� It is now easy to calculate the Hessian of

�R�x� p	 and �nd an example for which this matrix is not PSD� which shows R�x� p	 is not jointly

concave in x and p� This example motivates the approach we have taken in this paper�

��� Solution algorithms

It is now clear how we can solve Problem �
	 using an iterative non�linear optimization algorithm�

First� the problem is reformulated as

maxx
P

iRi�xi	

s�t� Ax � c

x � �

��	

Given a feasible allocation x � �x�� ���� xn	 we can calculate the optimal price vector p�x	 �

�p��x�	� ���� pn�xn		 by solving optimality condition ��	 for all products i � �� ���� n� From this� the

�rst and the second order derivative of the objective function at this point follow �e�g� Young� ���	�

This information can be used to determine a new and improved feasible allocation� for instance

using the Frank�Wolfe method �e�g� Bertsekas� �	� These steps are repeated until no signi�cant

further improvement is made� at which point the algorithm terminates� Given the conditions of

Theorem 
� this will be the optimal production plan� from which the optimal prices follow�

�



For reasons that will become clear in Section �� in the numerical experiments of Section � we

have used a simpler approach� In all our test cases Z � Erlang� thus the functions Ri�xi	 in the

objective function of ��	 are concave� We have approximated these by piecewise linear functions

de�ned by a �nite set of discretization points� This is possible because the domain of the functions

Ri�xi	 is bounded by the resource and non�negativity constraints� It is easy to see that using this

piecewise linear approximation of the concave objective function� Problem ��	 can be rewritten as a

linear optimization problem� Both the accuracy and the number of variables of this approximation

depend on the number of discretization points� We ran some numerical tests to make sure that our

approximation was su�ciently accurate� Further increasing the number of discretization points did

not signi�cantly a�ect the optimal objective function value�

To conclude this section� we give some results that can speed up the numerical experiments of

Section �� If Z � Erlang�k� ��k	� it is easy to see thatZ y

�
zf�z	dz � P �Y � k � �	

for some random variable Y � Poisson�yk	� Thus

E �minfy� Zg� �

Z y

�
zf�z	dz � yP �Z � y	

� P �Y � k � �	 � yP �Y � k � �	

These results are useful for solving ��	 numerically� e�g� by the bi�section method�

� The multi�period problem

In this section we consider a multi�period extension of the pricing and resource allocation problem

in a network� where the ��nite	 planning horizon is divided into T periods� At the beginning of

each period� the company needs to decide its prices and production levels given the remaining

supply of resources� We assume that the company implements a make�to�order inventory policy�

To optimally allocate its resources� the company limits how much of each good it is willing to sell

during each period� but the supply of resources is only a�ected by actual sales� As a result� there

is no inventory of �nished products�

In the following we use the notation from Section 
�
� with the convention that the index t

refers to the situation at the beginning of the period� For t � �� � � � � T � the dynamic programming

formulation of the problem outlined above is�

J t�ct	 � maxxt�ptE

�
nP
i��

minfDt
i�p

t
i	� x

t
igpti � J t���ct�A �minfDt�pt	�xtg	

�
s�t� Axt� ct

xt�pt� �

��	

subject to the initial condition

JT���cT��	 � �

�



In principle� this model can be used to determine the optimal dynamic pricing and resource alloca�

tion policy� However� the state vector of the model is the remaining supply of each of the resources�

Since the number of resources may be large� the curse of dimensionality of dynamic programming

renders this approach numerically intractable for practical purposes� We therefore need to develop

heuristic solutions� In this section we consider three such methods� which are all based on solving

a mathematical programming problem similar to ��	� In our opinion� this is the only tractable

way to solve the resource allocation issue that is inherent to the pricing problem� All methods

are understood to be implemented on a rolling�horizon basis� i�e� the model is re�optimized at the

beginning of each period given the remaining supply of resources�

A note on dynamic pricing

For a better understanding of the performance of each of these heuristics� we need to understand

how dynamic pricing can increase revenues� First� price changes can be used to compensate for

normal statistical �uctuations of demand� For instance� when sales are behind expectations the

company may lower its prices to stimulate demand� Second� when the willingness to pay of its

customers changes over time� the company should charge higher prices in periods of price�inelastic

demand to maximize its pro�ts� For instance� some people are willing to pay a premium in the

beginning of the fashion season to wear the latest fashion� while others prefer to wait until an end�

of�season sale� Zhao and Zheng �
���	 showed that although the second e�ect is more important

than the �rst� its impact on expected revenue can still be signi�cant�

��� The Demand Aggregation Method

The �rst method is to calculate the optimal �xed price and resource allocation policy for the

remaining part of the planning horizon� Let

Dt�pt	 � �t�pt	 � Zt �t � �� ���� T 	

for some random variables Zt with E�Zt� � � and V ar�Zt� � ��z � Assume that �t�p	 � ��p	 and

Zt � Z for all t � �� ���� T � i�e� demand is time�homogeneous� Let D
t
�p	 be the aggregate demand

over periods t to T at a constant price p� Then it is easy to see that

D
t
�p	 � ��p	

TX
i�t

Zi � �t�p	Z
t

��	

�t�p	 �
TX
i�t

�i�p	 � �T � t � �	��p	

for some random variable Z
t
with E�Z

t
� � � and V ar�Z

t
� � ��z��T � t � �	� Hence the aggregate

demand to come �ts into the framework of Model ��	� The random variables D
t
�p	 can be used as

input for Model �
	 to obtain an approximate solution xt and pt to the Bellman equation ��	� We

refer to this heuristic as the Demand Aggregation Method �DAM	�





This approach is less suitable when demand is not homogeneous over time� since the aggregate

demand distribution may not �t exactly into the framework of Section 
�
� There may not be

an aggregate expected demand function �t�p	 and a random variable Z
t
with unit expectation

and variance independent of p such that ��	 holds� The expectations of the random variables on

either side of ��	 can easily be matched� but for the variance this may be impossible to do exactly�

However� this is still a reasonable approximation to the problem when a constant price over time

is indeed close to optimal� A more fundamental issue arises when the price elasticity of demand

varies over time� DAM will lead to a price in period t that is presumably a good �xed price over

the remaining periods� However� this is not necessarily the best price for period t if the price can

be adjusted later on� We therefore expect DAM to perform poorly in this case�

��� The Demand Disaggregation Method

The second method is to determine the production level and price �xki � p
k
i 	 for all periods to come

�k � t� ���� T 	 at the beginning of period t� To simplify the model� we assume that the production

xki is used exclusively to satisfy the demand in period k that materializes at price pki � This problem

can be formulated as�

maxx�p E

�
TP
k�t

nP
i��

piminfxki � Dk
i �p

k
i 	g

�

s�t� A

�
TP
k�t

xk
	
� ct

xk� �

�	

The solution of �	 can be transformed to a heuristic solution �xki � p
k
i 	 of the Bellman equation ��	

by taking

xti �
TP
k�t

xki pti � pti �i � �� � � � � n	

In the following� we refer to this heuristic as the Demand Disaggregation Method �DDM	� Note

that �	 is an extension of Model �
	 with more decision variables� whereas for DAM only the model

input is a�ected in the form of the demand distributions�

The strength of DDM is that this method explicitly takes into account that the company can set

di�erent prices for the same product in di�erent periods� so that it can bene�t from a time�varying

willingness to pay by dynamic pricing� In that case� we expect DDM to outperform DAM� Its

primary weakness is that the underlying model assumes that any unsold production for period t

cannot be used to satisfy excess demand in period t � �� Unlike in the DP formulation� unused

resources do not carry over to the next period� We feel that this will lead to suboptimal production

levels� and we therefore expect DAM to outperform DDM when the price elasticity of demand is

constant over time and the e�ect of dynamic pricing is second�order�

��



��� Dynamic Programming Based Mathematical Programming

It is important to note that although both DAM and DDM are meant to be used dynamically�

i�e� the prices and resource allocation are recalculated at the beginning of each period given the

state of the system� the underlying models assume that the resulting policy is static� They do

not take into account that the decisions can periodically be adjusted in response to how demand

materializes� This may lead to overly conservative pricing decisions� Dynamic programming is the

only optimization technique that incorporates this e�ect but due to the curse of dimensionality

this approach is intractable when the dimension of the state space is even moderately sized� We

are therefore looking for a way to combine the e�cient mathematical programming solution of the

resource allocation problem with a truly dynamic pricing model�

Following an idea succesfully applied in Bertsimas et al� �
���	� we propose the following

heuristic that we will henceforth refer to as the Dynamic Programming based Method �DPM	� At

the beginning of period t� �x the total production level xti of each product� but allow dynamic pricing

over the remaining part of the planning horizon� The expected revenue of each product under the

optimal dynamic pricing policy can be calculated by solving the following dynamic programming

model�

J ti �x
t
i	 � maxpti��E



ptiminfDt�p

t
i	� x

t
ig� J t��i �maxfxti �Dt

i�p
t
i	� �g	

�
���	

subject to the initial condition

JT��i �xT��i 	 � �

The state is one�dimensional� thus this problem is tractable� The initial condition implies that the

product has no salvage value at the end of the planning horizon� which is what we have assumed

throughout this paper� Note that the state�space is continuous� hence the value functions J ti �x
t
i	

cannot be calculated exactly� We have used a piecewise linear approximation instead�

We can then obtain a heuristic solution to the Bellman equation ��	 by solving

max
nP
i��

J ti �x
t
i	

s�t� Axt� ct

xt� �

���	

and letting

pti � argmax
pti��

E


ptiminfDi

t�p
t
i	� x

t
ig� J t��i �maxfxti �Dt�p

t
i	� �g	

�
�i � �� � � � � n	

Given the piecewise linear approximation of the value functions� it is well known �e�g� Bertsimas

and Tsitsiklis� ��	 that Problem ���	 can be reformulated as a mixed integer program with binary

variables� If the value functions are concave� Problem ���	 can be reformulated as an ordinary linear

optimization problem that can be solved e�ciently� In our numerical experiments in Section �� this

always turned out to be the case� For the continuous�time dynamic pricing problem with Poisson

��



demand� Gallego and van Ryzin ���	 were able to prove concavity of the value function under

certain regularity conditions� Although thusfar we have not been able to prove this result for the

multiplicative demand model� these �ndings suggest that it may very well hold in this case as well�

We feel that the strenght of DPM is that it explicitly incorporates the dynamic pricing decisions

in a network setting� It may capture a signi�cant part of the e�ect that potential price changes

down the line should have on the current pricing decision� We expect this to be most important

when the price elasticity of demand varies over time� in which case the price changes will be

signi�cant� However� the method does not take into account that the resource allocation can be

updated in each period as well� The negative e�ect of this on the performance of DPM should

be more signi�cant for larger problems with many types of products� A possible improvement of

DPM that we have not further considered here is to formulate the value functions in terms of the

aggregate production level of all products with the same resource requirements� For instance� in

the airline setting this would be all applicable fares for a particular itinerary� The state of the DP

would still be one�dimensional� but now both the prices and the exact use of the resources allocated

to this group of products can be updated periodically�

Note that the expected revenue function R�x	 of Section 
�� can actually be seen as the value

function of a single�period DP problem� Although it can be evaluated numerically at every point

of its domain� we have chosen to work with a piecewise linear approximation of this function as

well� Since this function is provably concave� the approximation can be taken arbitrarily close�

As we have pointed out� Problem ��	 can then be solved as a linear optimization problem� More

importantly� the single�period Problem ��	 and the multi�period heuristics DAM� DDM and DPM

then all �t into the framework of Problem ���	 with a piecewise linear objective function� This

facilitates the development of generic computer software to solve both the static and the dynamic

pricing and resource allocation problem�

� Some theoretical bounds

In this section�we derive lower and upper bounds on the optimal expected revenue of the multi�

period pricing and resource allocation model� The lower bound explicitly depends on the level of

demand variability� These bounds will show the intuitive result that when the demand variability

decreases� the expected revenue of the optimal dynamic policy can be approximated with increasing

accuracy by a static policy based on a deterministic model of demand� Based on this result� we

argue that the �nding by Gallego and van Ryzin ���	 and Paschalidis and Tsitsiklis �
���	 that

the latter policy becomes close to optimal when the scale of the problem increases depends on

demand being modeled by a Poisson process�

In the following� we assume that in each period t �t � �� ���� T	 and for each product i �i � �� ���� n	

we have a random demand Dt
i�p

t
i	 whose distribution depends on the price pti� The results in this

section do not require the multiplicative demand model ��	� unless explicitly stated otherwise� Let

�




�ti�p
t
i	 be the expectation of Dt

i�p
t
i	 and let �ti�p

t
i	 denote its standard deviation� Let �ti�p

t
i	 �

�ti�p
t
i�

�ti�p
t
i�

be the coe�cient of variation of demand� For the moment� we assume that we have a partitioned

inventory control policy� i�e� we have allocations xti which for each period t is the maximum

amount of product i that we are willing to sell� A joint pricing and inventory control policy fxti� ptig
is considered to be static if it is determined at the beginning of the �rst period and not updated

afterwards� A policy is considered to be dynamic if xti and pti are determined at the beginning of

period t as a function of the remaining supply of resources�

Theorem �� Let
JLB � maxfptig

P
t�i p

t
i�

t
i�p

t
i	
�
�� �ti�p

t
i�

�

�
s�t� A

�P
�t�pt	

�� c

pt��t�pt	 � �

��
	

then

JLB � J�static � J�dynamic

where J�static and J�dynamic denote the expected revenue of the optimal static and dynamic joint

pricing and inventory control policy respectively�

Proof� See appendix� �

When Dt
i�p

t
i	 � � and �ti�p

t
i	 � � for some product i and period t� the lower bound can be

strengthened by replacing the corresponding terms in the objective function of Model ��
	 by

pti�
t
i�p

t
i	
�
�� �ti�p

t
i�
�

���ti�p
t
i�
�

�
� using Theorem � of Bertsimas and Popescu ��	� However� this would

not lead to any additional insights�

The tightness of the bound depends on the coe�cients of variation of demand� It may also

depend on the scale of the problem� that can be changed by multiplying both the expected demand

functions � and the supply of resources c by some scaling factor 	� For instance� for the additive

model� Dt
i�p

t
i	 � �ti�p

t
i	�Zt

i for some random variable Z with expectation � and standard deviation

�i�tz � In that case� �ti�p
t
i	 �

�
i�t
z

�t
i�p

t
i�
� thus the lowerbound becomes more tight when the scale of the

problem increases� For the multiplicative model� Dt
i�p

t
i	 � �ti�p

t
i	Z

t
i for some random variable Z

with expectation � and standard deviation �
i�t
z � The coe�cients of variation of demand in this

model do not depend on the scale� since �ti�p
t
i	 � �i�tz � An especially nice case is �i�tz � �z � when

the demand variation only occurs in the objective function as the multiplication factor ��� �z�
	�

Theorem �� Let Z be the vector of random variables that govern all the randomness in the

problem� i�e� we assume Dt
i�p

t
i	 � Dt

i�p
t
i� Z

t
i	 for some given functions Dt

i�p
t
i� Z

t
i	 that are non�

increasing in pti� Let J�dynamic�z	 be the revenue generated by the optimal dynamic pricing and

resource allocation policy when Z � z� De�ne

F �z	 � maxfptig
P

t�i p
t
iD

t
i�p

t
i� z

t
i	

s�t� A
�P

Dt�pt� zt	
�� c

pt��t�pt	 � �

��



then

J�dynamic � E


J�dynamic�z	

� � E �F �z	�

Proof� See appendix� �

Note that Theorem � proves the intuitive result that if we have perfect foresight of the ran�

domness in the problem� we can always do better than any non�anticipatory policy� Also note that

the result did not depend on the inventory control policy that was applied� as long as it does not

violate the resource constraints�

Theorem �� If F �z	 is a concave function of z� then

J�dynamic � F �E �z�	

Proof� The result follows directly from Theorem � and Jensen�s inequality� �

Theorem 	� For multiplicative demand functions� i�e� Dt
i�p

t
i� z

t
i	 � ��pti	z

t
i � F �z	 is concave in

z if the expected demand functions ���	 are convex in p�

Proof� See appendix� �

Theorem 
� Let
JUB � maxfptig

P
t�i p

t
i�

t
i�p

t
i	

s�t� A
�P

�t�pt	
�� c

pt��t�pt	 � �

Then for the multiplicative demand model with convex expected demand functions�

JLB � J�static � J�dynamic � JUB

and

lim
f�t

i
�� �i�tg

JLB � lim
f�t

i
�� �i�tg

J�static � lim
f�t

i
�� �i�tg

J�dynamic � JUB

Proof� The �rst result follows directly from Theorems �� � and �� The second result follows

from the de�nition of JLB and from JUB being independent of the level of demand variability� �

This theorem shows the intuitive result that if the randomness is taken out of the problem� the

optimal dynamic policy can be approximated by a static policy based on a deterministic model of

demand� Note that none of the proofs of these theorems depends on the inventory control policy

of the dynamic model� as long as it does not violate any of the resource constraints� This means

that the theorem also holds when we consider the optimal expected revenue of a make�to�order

inventory policy by a manufacturer or of nested seat inventory control by an airline�

As we have seen� for the multiplicative demand model these bounds do not depend on the

scale of the problem� This suggests that a policy based on a stochastic model will outperform a

policy based on a deterministic model and that a static policy will be outperformed by a dynamic

policy� even when the scale of the problem increases� This was con�rmed by numerical experiments

��



reported in Section �� By contrast� Gallego and van Ryzin ���	 and Paschalidis and Tsitsiklis

�
���	 �nd that a static pricing policy based on a deterministic model of demand is asymptotically

optimal� Our bounds o�er an intuitive explanation for this apparent contradiction� Under Poisson

arrivals� we know that �ti�p
t
i	 �

�p
�t
i�p

t
i�
� Thus intuitively� the lowerbound becomes more tight at

rate
p
	� Since the deterministic model gives an upperbound in this case as well� as shown by

Gallego and van Ryzin� the solutions will converge when the scale of the problem increases� In

a sense� this scaling takes out the randomness of the problem� The result above shows that this

result does not hold in general and depends on the demand distribution�

� Numerical experiments

��� Problem generation

Since we did not have real data to run numerical experiments� we have written a computer program

that automatically generates test problems according to prespeci�ed demand� network and fare

settings� The examples were intended to be realistic and allow sensitivity analysis with respect

to the network load factor� demand variability and other factors that may a�ect the simulation

results� The basic features of the problem generation program are presented below�

All test cases are motivated by the airline revenue management problem� We have only consid�

ered single�hub networks� The number of spokes N � the number of fare classes F and number of

periods T can be varied� The airline o�ers tickets from each spoke to the hub and to every other

spoke and from the hub to each spoke� All trips are one�way� We only consider one bank of �ights

from the spokes into the hub and one connecting bank from the hub back to the spokes�

At the beginning of each period� the prices and resource allocation are reoptimized� Demand

for each product in each period is independent and modeled by the Erlang distribution with a

constant coe�cient of variation� This parameter allows changing the overall demand variability in

the network� The default setting was CV � � ���� The expected demand functions are linear in

the prices�

Since price is a decision variable we cannot determine the network demand factor beforehand�

We therefore introduce the notion of DF�� which we de�ne as the network demand factor with

all prices set to p�� DF� is an input parameter for the problem generation program� which then

calculates the demand levels at p� on each leg and sets the leg capacities accordingly� The default

setting was DF� � 
�

The demand parameters are the same for each fare product in the same period� except for small

random perturbations that we used to break the symmetry� We only distinguish fare products

by their number of legs and by their fare class� The parameters are based on values used by

Weatherford ���	 based on his experience with the airline industry�

In a realistic airline network� only about ��� of the passengers on a leg are local while the

others connect at the hub� The average fare for a connecting �ight is typically higher� If there are

��



multiple fare classes� demand for the highest fare class is the least price�sensitive� Typically� the

demand for the higher fare classes is also lower than the demand for the lower fare classes� All this

was modeled as well� again for p��

The time�dimension is added in three di�erent ways designed to identify which of the heuristics

of Section � should be used when� The �rst case is that of time�homogeneous demand �HD	� where

both the demand intensity and the price elasticity are constant over time� The second case �NHD�

F � �	 applies to an airline segmenting the market by o�ering multiple well�di�erentiated fare

classes� We model that the lower fare classes tend to book �rst� i�e� the higher the fare class�

the later the peak in demand intensity� This re�ects that price�inelastic business travelers tend

to book later than price�elastic leisure travelers� as is the case in practice� As a result demand is

non�homogeneous� but we assume that the price elasticity of demand for each fare class is constant

over time� The third case �NHD� F � �	 applies to an airline that at any given time only o�ers one

fare� Demand is non�homogeneous since its price elasticity decreases over time as business travelers

start making up a larger part of the market� In response� the fare should go up signi�cantly when

getting close to �ight departure�

��� The value of centralized pricing

In this section we show that the gain of a centralized pricing policy� i�e� optimized over the network

as a whole rather than for each product individually� can be signi�cant� We consider two single�

period test problems for which the optimal prices and resource allocation can be determined using

Model ��	� The results are compared to the suboptimal pricing policy p�� Given these prices�

the resource allocation is optimized by solving a stochastic programming model similar to ��	�

Here as well as in the following sections� all comparisons are based on ���� iterations of a demand

simulation program that approximates the expected revenue of any given pricing and resource

allocation policy�

Our �rst example shows that as one would expect� the gain of optimal pricing increases with

the network demand factor� The results for N � � and F � 
 are reported in Table �� We have

repeated this experiment for N � �� and N � �� but the results were very similar� presumably

because of the symmetric problem generation method�

Table �� Revenue gain optimal over benchmark pricing policy �N � �� F � 
� T � ��

DF� 	�
	 	��
 ���	 ��

 ��	 ���
 ���	 ��
 ���	 ���
 ��		

LF 	��� 	��� 	��� 	��
 	�� 	��� 	��� 	��� 	��� 	��� 	���

Gain 	��� ��	� ��� ����� ����� �	�
� ���� ����� ����� ���� ���	�

Our second example shows that the bene�t of optimal pricing decreases with the demand

uncertainty in the network� The results for N � � and F � 
 are given in Table 
� The explanation

may be that when there is more uncertainty� demand is less likely to be at the level for which the

price that maximizes the expected revenue is indeed optimal�

��



Table �� Revenue gain optimal over benchmark pricing policy �N � �� F � 
� T � ��

CV� ���k� 	��	 	��� 	��� 	��	 	��
 	��� 	�
	 ��		

Gain ����� �	�� �	��� �	� ���� ��	� ����� �����

The benchmark pricing policy p� is not a good one� since we know it systematically sets the

prices too high� However� that may be similar to what is going on in practice when each point of sale

�say each spoke	 can set its own pro�t�maximizing prices without regard to the pro�t maximizing

pricing strategy for the network as a whole� The point we wanted to make in this section is that

the impact of an optimal pricing policy can be signi�cant and as high as 

��

��� The value of dynamic pricing

In this section we show that the value of dynamic pricing can be signi�cant by comparing the best

static to the best dynamic policy� The results for N � � and T � � are reported in Table �� The

best static pricing policy in all cases was given by Model ��	� In the case of stationary demand�

this policy is optimal� The best dynamic pricing policy when the price elasticity did not vary over

time �HD� F � � and NHD� F � 
	 was DAM� which was marginally better than the DP based

method� The latter performed best when the willingness to pay varied over time �NHD� F � �	�

We will further investigate these di�erences in the examples of Section ����

Table �� Revenue gain best dynamic over best static pricing policy

CV� ���k� 	��	 	��� 	��� 	��	 	��
 	��� 	�
	 ��		

HD� F�� ���� ���� ��
� ��� ���� ���� 
��� ����

NHD� F�� ����� ����� ���
� ����� ����� ����� ����� �����

NHD� F�� ���� ���� ���� 
�	� 
��� ��	� ���� ����

The impact of dynamic pricing increases with the demand variance� since when there is more

demand uncertainty the ability to compensate for statistical �uctuations in demand by price changes

becomes more useful� Note that even when the price elasticity does not change over time� the value

of dynamic pricing can be signi�cant� The improvements found here are of the same order of

magnitude as those reported by Federgruen and Heching ��	�

Comparison of dynamic pricing methods

Now that we have established the value of dynamic pricing� we need to investigate which of the

methods discussed in Section � determines the best such policy� Since the DP based method is the

most sophisticated� we expect this method to do best� Therefore� all results below are reported as

the gain of DPM over the two other methods� Tables ��� compare the performance of the three

heuristics for di�erent levels of demand variability and network size�

Table 
� Sensitivity gain DP over DAM and DDM for demand uncertainty �N � �� T � ��

��



Problem CV� ���k� 	��	 	��� 	��� 	��	 	��
 	��� 	�
	 ��		

HD� F�� DAM 	�	�� 	�	�� 	�	
� 	�	�� 	�	�� 	���� 	���� 	����

HD� F�� DDM 	���� 	��� 	���� 	��� 	���� 	��� 	��� 	��	�

NHD� F�� DAM ���	�� ���
	� ������ ������ ���	�� ���	�� ���

� �	�
�

NHD� F�� DDM 	���� ��	�� ����� ��

� ���� ��	�� ���� �����

NHD� F�� DAM 	�	�� 	�	�� 	�	�� 	�	�� 	���� 	��� 	���� 	����

NHD� F�� DDM 	��	� 	��
� 	���� 	���� 	���� 	��
� 	��
� 	��
�

Table �� Sensitivity gain DP over DAM and DDM for demand uncertainty �N � �� T � ��

Problem CV� ���k� 	��	 	��� 	��� 	��	 	��
 	��� 	�
	 ��		

HD� F�� DAM �	�	��� �	�	��� �	�	��� �	�	��� �	�	��� �	�	
�� �	�	��� �	�����

HD� F�� DDM 	�	� 	��	� 	��	� 	���� 	���� 	��	� 	�	
� �	�	���

NHD� F�� DAM �
��� �
�	� ���� ����� ����� ����� ����� �
�	�

NHD� F�� DDM 	���� 	���� 	���� 	�
�� 	�
�� 	���� 	�	
� 	����

NHD� F�� DAM �	�	��� �	�	��� �	�	��� �	�	��� �	�	��� �	�	��� 	�	�� 	�		�

NHD� F�� DDM 	���� 	���� 	��	� 	���� 	���� 	���� 	���� 	����

Table �� Gain DP over DAM and DDM for di�erent network sizes �T � ��

Problem N � � � � 
 � � �	

HD� F�� DAM 	��	� 	�	�� �	�	��� �	�	��� �	�	��� �	�	��� �	�	��� �	�	��

HD� F�� DDM 	�
	� 	��� 	���� 	���� 	�	�� 	�	�� 	�	�� 	�	��

NHD� F�� DAM ������ ������ ������ ����	� ����
� ����
� �
�	�� �
����

NHD� F�� DDM ��	��� ��
��� ������ 	��
� 	���� 	��
� 	�
�� 	����

NHD� F�� DAM 	���� 	�	�� 	�	�� 	�	�� 	�		� �	�	��� �	�	��� �	�	���

NHD� F�� DDM 	���� 	���� 	���� 	��� 	���� 	���� 	��
� 	����

These simulation results con�rm our expectations about the performance of the heuristics for

di�erent types of test cases� When the price elasticity of demand is constant over time� DAM slightly

but consistently outperforms DDMwhile the performance of DPM is roughly comparable� When the

price�elasticity varies over time� DAM performs poorly and DPM signi�cantly outperforms DDM�

When the demand uncertainty increases� the performance of DPM relative to the other heuristics

seems to improve somewhat� while the opposite is true when the network size increases� We can

conclude that DPM method is in general somewhat more robust than the other two heuristics� but

only when the price elasticity of demand varies over time this method is clearly preferable�

��� The value of a stochastic model

We now compare the DP based method with a simpler approach based on a deterministic model

that ignores the randomness of demand� The results are given in Table � We also report the

��



revenue gap between DPM and the upper bound JUB� which is in fact the objective value of the

deterministic model�

Table � Gain DP over deterministic model and di�erence with UB �N � ��T � ��

Problem CV� ���k� 	��	 	��� 	��� 	��	 	��
 	��� 	�
	 ��		

HD� F�� Det 	��	� 	��
� 	���� 	���� 	��
� 	�
�� 	��	� 	��
�

HD� F�� UB ���	� ����� ���
� ���� ���� 
���� ����� ������

NHD� F�� Det 	���� ��	�� ����� ����� ��
�� ���� ����� �����

NHD� F�� UB ��	� ���	� 
��
� ��	
� ���� ��
�� ������ ������

NHD� F�� Det 	���� 	��� 	���� 	��
� 	���� 	���� 	���� �����

NHD� F�� UB ����� ���	� ����� ��

� ����� 
��� ����� ������

The results show that the revenue gain of using a stochastic model can be signi�cant� Note

that the advantage of the deterministic approach is that the calculation of the optimal prices may

not require solving the �rst�order optimality condition ��	 numerically� but in fact this can be done

�o��line� when setting up Model ��	� Also note that the UB is not very tight and therefore may

not be very useful�

We repeated this experiment for di�erent scales of the problem �	 ranging from � to ��	 but

this had no signi�cant e�ect on the results in Table � The revenue of each method and the UB just

increased proportionally� Earlier we showed that the revenue of the deterministic model and DPM

converge when the demand uncertainty is taken out of the problem� These two results combined

show that the �nding by Gallego and van Ryzin ���	 and Paschalidis and Tsitsiklis �
���	 is not

the direct result of the scaling itself� but more of the corresponding reduction in randomness when

demand is modeled by a Poisson process�

� The role of inventory control

Thusfar we have assumed that the resource allocation determines how much of each product can

be sold� For airline revenue management� this corresponds to a partitioned seat inventory control

policy� In practice� airlines implement nested seat inventory control� where seats allocated to

discount classes are available for sale to full�fare passengers as well� The problem with modeling

such a policy is that who these seats are eventually sold to depends in part on the arrival order of

booking requests� Because of this� it may be hard to express the expected revenue function in closed

form� By contrast� the seat partitioning allows a static mathematical programming formulation

of the pricing problem� In this section� we investigate the impact of the inventory policy on the

optimal prices by working out a small example�

Consider a single�leg �ight with two fare classes� of which class � has the highest fare� We use

the multiplicative demand model ��	 with Z exponentially distributed with parameter  � �� and

assume that class 
 booking requests come in �rst� Let b denote the booking limit for class 
� Let

�



ADi denote the accepted demand for class i� Then

E �AD�jZ� � z�� � f
��EZ�

h
min

n
c���z�
�
�

� Z�

oi
if ��z� � b

��EZ�

h
min

n
c�b
�
�

� Z�

oi
otherwise

Using that

E �min fy� Zg� � �� e�y y � � ���	

we have

E �AD�jZ� � z�� � f
��

h
�� exp

�
� c��

�
z�

��

�i
if z� � b

��

��

h
�� exp

�
� c�b

�
�

�i
otherwise

Thus by the law of iterated expectations

E �AD�� � EZ�
�E �AD�jZ� � z���

� ��

�Z b
��

�

�
�� e

�
c���z�

��

	
e�z�dz� �

Z �

b
��

�
�� e

� c�b
��

�
e�z�dz�
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�
�
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��
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e
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for �� �� ��� For �� � ��� we get

E �AD�� � ��

�
�� e

� c
��

�
� be

� c
��

Note that for �� � �� E �AD�� � �� By ���	� we also have

E �AD�� � ��

�
�� e

� b
��

�
For�� � �� this gives E �AD�� � �� The expected revenue as a function of p�� p� and b is

ER�p�� p�� b	 � p�E �AD�� � p�E �AD��

Note that the �rst�order optimality condition for the nested booking limit is �Littlewood� ��
	

p�P �D� � c� b	 � p�

which gives

b � c� �� ln

�
p�
p�

	
thus b can be eliminated from the revenue optimization problem�

For this small example� we have compared the optimal nested �b� p	 and partitioned �x� p	

pricing and seat inventory control policy� Here x denotes the seat allocation to class 
 from the

partitioned model� which heuristically can be used as a nested booking limit as well� The results are

reported in Table ��� �R� is how much higher the optimal expected revenue of the nested policy

is compared to the optimal expected revenue of the partitioned policy� �R� is the optimality gap


�



from using the booking limit and prices generated by the partitioned model for nested booking

control� �R� is the optimality gap from using the optimal nested booking limit with the prices

from the partitioned model for nested booking control� The �rst scenario is the base case� In

scenarios 
 and � the price sensitivity of class � demand is varied� In scenarios � and � the volume

of demand is increased� The optimization was done numerically in Excel�

Table �	� Comparison of a nested and a partitioned pricing model

	� 
� 	� 
� p� p� b p� p� x �R� �R� �R�

�	 	�	�
 ��	 	��
 �
��� ��
�
 	�� ��
� ���� 
��� ��� ��
� 	���

�	 	�	
 ��	 	��
 ���
 ����� �	�� �	�� ��	�
 ��� ���� ���� 	���

�	 	�� ��	 	��
 ����� �	�� ��� ����� �	��� ���� �	��� 
��� 	���

��	 	��
 ��	 	�
 
���� ���� �
�� 
���� �
��� 
��� �	��� ���� 	���

��	 	�� ��	 � 
�
�� ����	 ���� 
���
 ���
 ���� ���� ���� 	���

The point to note is that the prices from the partioned model are good input for nested booking

control� but the partioned seat allocation is not� The same result was reported by Weatherford

���	 for a similarly small example� assuming Gaussian demand�

The results suggest a two�stage approach to pricing and resource allocation in a nested or

make�to�stock setting where substitution of certain products is allowed� First� use a partioned

model such as ��	 to heuristically determine the price of each product� Then� given these prices�

optimize or heuristically determine the optimal inventory policy� For example� an approach for

calculating nested booking limits for airline network RM is developed in Bertsimas and De Boer

�
��
	� However� the examples considered here and by Weatherford are very limited� Further

research is required to validate this approach�

� Conclusions

In this paper we have developed a new model for joint pricing and resource allocation in a network�

with an important application to airline pricing� We have shown that for certain types of demand

distributions this problem is convex� thus tractable for large instances� Based on this model� we

have developed and tested several heuristics for dynamic pricing and resource allocation� The

strongest approach� in particular when the price elasticity of demand varies over time� is an elegant

combination of linear and dynamic programming� Numerical experiments and theoretical bounds

on the optimal expected revenue suggest that the extent to which a dynamic policy based on a

stochastic model will outperform a simple static policy based on a deterministic model depends

on the level of demand variability� When demand is modeled by a Poisson process� the variability

decreases with the scale of the problem� in which case the latter approach is asymptotically optimal�

APPENDIX
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Proof of Theorem �� The second inequality follows from each static policy being an admissible

dynamic policy as well� To see the �rst inequality� notice that the optimal static policy is obtained

by solving

J�static � maxxt�pt E
hP

t�i p
t
iminfxti� Dt

i�p
t
i	g
i

s�t� A �
P

xt	� c

xt�pt��t�pt	 � �

Note that for all feasible price vectors pt such that A
�P

�t�pt	
�� c�

�
xt� �

t�pt	�pt
�
is a feasible

solution to this problem� Let Jstatic��
t�pt	�pt	 denote the expected revenue of such a policy� For

any random variable D with mean � and standard deviation �� and for any real number d� we have

the inequality

E


�D � d	�

� �
q
�� � �d� �	� � �d� �	




where x� � max�x� �	 �e�g� Gallego� �
	� Using that

E


minfxti� Dt

i�p
t
i	g
�
� E



Dt
i�p

t
i	
��E

h�
Dt
i�p

t
i	� xti

��i
�sales equal demand minus lost sales	� this gives us

minfxti� Dt
i�p

t
i	g � �ti�p

t
i	�

q
��ti�p

t
i		

� � �xti � �ti�p
t
i		

� � �xti � �ti�p
t
i	
�




Thus

Jstatic��
t�pt	�pt	 � E

�
�X

t�i

ptiminf�ti�pti	� Dt
i�p

t
i	g
�
�

�
X
t�i

pti

�
�ti�p

t
i	�

�ti�p
t
i	




	

�
X
t�i

pti�
t
i�p

t
i	

�
�� �ti�p

t
i	




	

For all feasible pt� we have Jstatic��t�p
t	�pt	 � J�static� JLB is the maximum such lowerbound� The

inequality of the theorem follows� �

Proof of Theorem �� First� de�ne

G�z	 � maxdt�pt E
hP

t�i p
t
iminfdti� Dt

i�p
t
i� z

t
i	g
i

s�t� A
�P

dt
�� c

dt�pt��t�pt	 � �

Then F �z	 � G�z	� To see this� consider the optimal solution �d��p�	 of the problem de�ning

G�z	� If for some i� Dt
i�p

t�
i � z

t
i	 � dt�i � we could set dt�i � Dt

i�p
t�
i � z

t
i	 without a�ecting the objective

function or the feasibility of the solution� since A is assumed to be non�negative� If� on the other







hand� Dt
i�p

t�
i � z

t
i	 � dt�i � we could increase pt�i by some small � � � such that Dt

i�p
t�
i � �� zti	 � dt�i �

which would increase the objective function by the non�negativity of dt�i while keeping the solution

feasible� This would contradict the optimality of �d��p�	 though� so we know that this case can not

occur� As a result� we know that we can always choose dt�i � Dt
i�p

t�
i � z

t
i	 and e�ectively eliminate

the variables dt�i � which gives the problem de�ning F �z	� Now let p�z	 be the optimal dynamic

pricing policy when Z � z and let d�z	 be the corresponding amount sold of each product� Then

we know that A
P

t d
t�z	 � c �since the resource constraints are not allowed to be violated	 and

that d�z	 � D�p�z	� z	 �since we cannot sell more than we had demand for	� Note that

J�dynamic�z	 � p�z	�d�z	

�
X
t�i

p�z	timinfd�z	ti� Dt
i�p�z	

t
i� z

t
i	g

� G�z	 � F �z	

where the last inequality follows from �p�z	�d�z		 being a feasible solution to the problem de�ning

G�z	 with objective value J�dynamic�z	� This is true for all z� so it also holds in expectation� The

result of the theorem follows� �

Proof of Theorem 	� For the multiplicative demand model� we have

F �z	 � maxfptig
P

t�i p
t
i��p

t
i	z

t
i

s�t�
P

i�t aij��p
t
i	z

t
i � cj j � �� ���� m

pt��t�pt	 � �

We are done when we show that

F �z� � ��� 	z�	 � F �z�	 � ��� 	F �z�	

for two vectors z�� z� � � and some scalar  	 ��� �	� Let p� and p� solve the problem for z� and

z� respectively� Then

F �z�	 � ��� 	F �z�	 � 
X
t�i

p�i�t��p
�
i�t	z

�
i�t � ��� 	

X
t�i

p�i�t��p
�
i�t	z

�
i�t

Now let pi�t �
	z�i�t

	z�i�t����	�z
�

i�t

p�i�t �
���	�z�i�t

	z�i�t����	�z
�

i�t

p�i�t� We have

z�i�tp
�
i�t��p

�
i�t	 � ��� 	z�i�tp

�
i�t��p

�
i�t	 �

�
z�i�t � ��� 	z�i�t

� ��
z�i�t

z�i�t � ��� 	z�i�t
p�i�t��p

�
i�t	 �

��� 	z�i�t
z�i�t � ��� 	z�i�t

p�i�t��p
�
i�t	



� �
z�i�t � ��� 	z�i�t

�
pi�t��pi�t	

by the assumed concavity of p��p	� ThusX
t�i

�
z�i�t � ��� 	z�i�t

�
pi�t��pi�t	 � F �z�	 � ��� 	F �z�	


�



Also�

��pi�t	 � �

�
z�i�t

z�i�t � ��� 	z�i�t
p�i�t �

��� 	z�i�t
z�i�t � ��� 	z�i�t

p�i�t



� z�i�t
z�i�t � ��� 	z�i�t

��p�i�t	 �
��� 	z�i�t

z�i�t � ��� 	z�i�t
��p�i�t	

using that ��p	 is assumed to be convex� ThusX
i�t

aij��pi�t	
�
z�i�t � ��� 	z�i�t

� �
X
i�t

aij
�
z�i�t��p

�
i�t	 � ��� 	z�i�t��p

�
i�t	
�

� 
X
i�t

aijz
�
i�t��p

�
i�t	 � ��� 	

X
i�t

aijz
�
i�t��p

�
i�t	

� cj � ��� 	cj � cj

using that z�� z�� A � �� Thus pi�t is a feasible solution for the problem de�ning F �z�� ���	z�	

with objective value at least as large as F �z�	 � �� � 	F �z�	� Thus F �z� � �� � 	z�	 �
F �z�	 � ��� 	F �z�	� which is what we needed to show� �
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